Statistical Inference for Networks

Hsu Centennial, Beijing, July 2010

Peter Bickel

Statistics Dept. UC Berkeley

(Joint work with Aiyou Chen, Bell Labs, E. Levina, U. Mich)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

(With assistance of Jing Lei)

Outline

- * 1 Networks: types/Examples
- * 2 Networks: questions
 - a) Descriptive
 - b) Quantitative
- * 3 Modularities
 - 4 Statistical issues and selected models
 - $\boldsymbol{5}$ A nonparametric model for infinite networks and asymptotic theory

- 6 Consistency of modularities and efficient estimation
- 7 The asymptotics of degree distribution and empirical moments
- 8 Other methods of parametric submodel estimation
- 9 Some examples and discussion.

References

- 1. M.E.J. Newman (2010) Networks: An introduction. Oxford
- 2. Fan Chung, Linyuan Lu (2004) Complex graphs and networks. CBMS # 107 AMS
- 3. Eric D. Kolaczyk (2009) Statistical Analysis of Network Data
- Bela Bollobas, Svante Janson, Oliver Riordan (2007) The Phase Transition in Random Graphs. Random Structures and Algorithms, 31 (1) 3-122
- 5. B. and A. Chen (2009) A nonparametric view of network models and Newman-Girvan and other modularities, PNAS

Note: We will not discuss dynamically generated models , 📳 🚊 🚕 🤉

Examples: Technological Networks

Figure: Internet (The OPTE Project)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Examples: Social Networks

Figure: Karate Club (Newman, PNAS 2006)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples: Biological Networks

Figure: Food web (Neo Martinez, Berkeley)

Examples: Metabolic Web

Figure: Metabolic Pathways (IUBMB-Nicholson)

Examples: Information Networks

Figure: Paper networks (Marco A. Janssen, ASU)

A Mathematical Formulation

- G = (V, E): undirected graph
- $\{1, \cdots, n\}$: Arbitrarily labeled vertices
- A : adjacency matrix
- $A_{ij} = 1$ if edge between *i* and *j* (relationship)
- $A_{ij} = 0$ otherwise

Implications of Mathematical Description

- Undirected: Relations to or from not distinguished.
- Arbitrary labels: individual, geographical information not used.

Descriptive Statistics for Graph Structures

Centrality

• Def: Degree $D_i = \sum_{j \neq i} A_{ij}$

Statistics

• Relative degree $\frac{n}{2L}D_i$: "centrality of vertex"

$$L \equiv \frac{1}{2} \sum_{i \neq j} A_{ij} = \#$$
 of edges

• Average degree: "centrality of graph"

$$c = \frac{2L}{n}$$

Graph Structures

Cohesiveness

Def:

- Clique: Maximal fully connected subgraphs
- *k*-core: Maximal subset of vertices such that each is connected to at least *k* other members of subset.

Statistics:

- Size of cliques
- Number of k-cores

Clustering

- Transitivity: If *i* is related to *j* and *j* is related to *k*, then it is likely that *i* is related to *k*.
- Global Clustering Coefficient:

$$C = \frac{3 \times \# \text{ of } \triangle}{\# \text{ of } \triangle + \# \text{ of } \vee}$$

Chain Structure

Def:

- (Geodesic) Path between i, j: (shortest) set of edges (i, i₁)
 (i₁, i₂) ... (i_k, j).
- Connected component: Maximal set such that all pairs of vertices are connected by path in set.

Statistics:

• # and size of connected components.

	Network	Туре	п	m	с	S	l	α	С	C _{WS}	r	Ref(s).
Social	Film actors	Undirected	449 913	25516482	113.43	0.980	3.48	2.3	0.20	0.78	0.208	16,323
	Company directors	Undirected	7 673	55 392	14.44	0.876	4.60	-	0.59	0.88	0.276	88,253
	Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57		0.15	0.34	0.120	89,146
	Physics coauthorship	Undirected	52909	245 300	9.27	0.838	6.19	-	0.45	0.56	0.363	234,236
	Biology coauthorship	Undirected	1520251	11803064	15.53	0.918	4.92	-	0.088	0.60	0.127	234,236
	Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1				9,10
	Email messages	Directed	59812	86 300	1.44	0.952	4.95	1.5/2.0		0.16		103
	Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17	0.13	0.092	248
	Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.029	34
	Sexual contacts	Undirected	2810					3.2				197,198
c	WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.067	13,28
tio.	WWW AltaVista	Directed	203 549 046	1 466 000 000	7.20	0.914	16.18	2.1/2.7				56
Information	Citation network	Directed	783 339	6716198	8.57			3.0/-				280
	Roget's Thesaurus	Directed	1.022	5 103	4.99	0.977	4.87	_	0.13	0.15	0.157	184
	Word co-occurrence	Undirected	460 902	16100000	66.96	1.000		2.7		0.44		97,116
	Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.189	66,111
al	Power grid	Undirected	4941	6 594	2.67	1.000	18.99	_	0.10	0.080	-0.003	323
ъ,	Train routes	Undirected	587	19 603	66.79	1.000	2.16	_		0.69	-0.033	294
Technological	Software packages	Directed	1 4 3 9	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.016	239
FL 1	Software classes	Directed	1 376	2 213	1.61	1.000	5.40		0.033	0.012	-0.119	315
Te	Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.010	0.030	-0.154	115
	Peer-to-peer network	Undirected	880	1296	1.47	0.805	4.28	2.1	0.012	0.011	-0.366	6,282
Biological	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240	166
	Protein interactions	Undirected	2115	2 2 4 0	2.12	0.689	6.80	2.4	0.072	0.071	-0.156	164
	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.263	160
iol	Freshwater food web	Directed	92	997	10.84	1.000	1.90		0.20	0.087	-0.326	209
щ	Neural network	Directed	307	2 3 5 9	7.68	0.967	3.97	-	0.18	0.28	-0.226	323, 328

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total number of vertices n; total number of edges n; mean degree c; fraction of vertices in the largest component S (or the largest weakly connected component in the case of a directed network); mean geodesic distance between connected vertex pairs ℓ ; exponent a of the degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41); clustering coefficient C_{WS} from the alternative definition of Eq. (7.44); and the degree correlation coefficient r from Eq. (7.52). The last column gives the citation(s) for each network in the bibliography. Blank entries indicate unavailable data.

Newman (2010) Networks: an introduction, Oxford

Quartiles (2-4)	Social			Information			Technological			Biological network		
size (K)	59	450	47K	270	780	203K	1	5	24	.3	.8	2
degree	4	14	113	7	8	67	3	4	67	8	9	11
1st.comp	.82	.88	.98	.98	1	1	1	1	1	1	1	1
geo dist	5	6	16	11	14	16	3	11	19	3	4	7
duster of	.15	.2	.59	.11	.12	.13	-03	.05	.1	.16	.18	.2

Example	size (K)	degree	1st.comp	geo dist	duster of
math coauthor	253	4	.8	7.57	.15
email	60	1	.9	4.9	*
citation	783	9	*	*	*
Internet	11	6	1.0	3	.03
protein	2	2	-69	6.8	.07
food web	.09	11	1.0	1.9	.2

Community Identification

- $V = V_1 \cup \cdots \cup V_K$
- V_i : communities, $i = 1, \dots, K$, where K is known.

 V_i highly interiorly, low exteriorly connected.

• Problem: Determine V_i using only A

$\label{eq:approaches} Approaches \ to \ Sub-community \ Identification: \ Maximize$

Modularities

- Newman-Girvan modularity (Phys. Rev. E, 2004) $\mathbf{e} = (e_1, \dots, e_n)$: $e_i \in \{1, \dots, K\}$ (community labels)
- The modularity function:

$$Q_{N}(\mathbf{e}) = \sum_{k=1}^{K} \left(\frac{O_{kk}(\mathbf{e},A)}{D_{+}} - \left(\frac{D_{k}(\mathbf{e})}{D_{+}} \right)^{2} \right),$$

where

$$\begin{aligned} O_{ab}(\mathbf{e}, A) &= \sum_{i,j} A_{ij} \mathbf{1}(e_i = a, e_j = b) \\ &= (\# \text{ of edges between } a \text{ and } b) \quad a \neq b \\ &= 2 \times (\# \text{ of edges between members of } a), \quad a = b \\ D_k(\mathbf{e}) &= \sum_{l=1}^K O_{kl}(\mathbf{e}, A) \\ &= \text{sum of degrees of nodes in } k \\ D_+ &= \sum_{k=1}^K D_k(\mathbf{e}) = 2 \times (\# \text{ of edges between all nodes }) \end{aligned}$$

- In principle NP hard
- A relaxation for K = 2 leads to method like spectral clustering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• How to compare performance

Stochastic Models

The Erdős-Rényi Model

- Probability distributions on graphs of *n* vertices.
- *P* on {Symmetric $n \times n$ matrices of 0's and 1's}.
- E-R (modified): place edges independently with probability c/n ($\binom{n}{2}$ Bernoulli trials). $c \approx E$ (ave degree)

Qualitative Features of Empirical Graphs vs Qualitative Features of E-R

	E-R	Empirical
Small world	Yes	Yes
Giant component	Yes	Yes
Power-law degree distribution	No	Yes
Communities	No	Yes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

- Community label: c = (c₁, · · · , c_n) i.i.d. multinomial (π₁, · · · , π_K) ≡ K "communities".
- Relation:

$$\mathbb{P}(A_{ij}=1|c_i=a,c_j=b) = P_{ab}.$$

• A_{ii} conditionally independent

$$\mathbb{P}(A_{ij}=0) = 1 - \sum_{1 < a,b < K} \pi_a \pi_b P_{ab}.$$

• K = 1: E-R model.

Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on ∞ graphs

Aldous/Hoover (1983)

$$\mathcal{L}(A_{ij}:i,j\geq 1) = \mathcal{L}(A_{\pi_i,\pi_j}:i,j\geq 1),$$

for all permutations $\pi \Longleftrightarrow$

$$\exists \quad g: [0,1]^4 o \{0,1\}$$
 such that $A_{ij} \quad = \quad g(lpha, \xi_i, \xi_j, \eta_{ij}),$

where

 α, ξ_i, η_{ij} , all $i, j \ge i$, i.i.d. $\mathcal{U}(0, 1), g(\alpha, u, v, w) = g(\alpha, v, u, w),$ $\eta_{ij} = \eta_{ji}.$

Ergodic Models

 \mathcal{L} is an ergodic probability iff for g with g(u, v, w) = g(v, u, w) $\forall (u, v, w)$,

$$A_{ij} = g(\xi_i, \xi_j, \eta_{ij}).$$

 $\ensuremath{\mathcal{L}}$ is determined by

$$h(u, v) \equiv \mathbb{P}(A_{ij} = 1 | \xi_i = u, \xi_j = v),$$

$$h(u, v) = h(v, u).$$

Notes:

- 1. K-block models and many other special cases
- Model (also referred to as threshold models) also suggested by Diaconis, Janson (2008)
- 3. More general models (Bollobás, Riordan & Janson (2007))

"Parametrization" of NP Model

- *h* is not uniquely defined.
- h(φ(u), φ(v)), where φ is measure-preserving, gives same model.
- But, $h_{\text{CAN}} = \text{that } h(\cdot, \cdot)$ in equivalence class such that $P[A_{ij} = 1 | \xi_i = z] = \int_0^1 h_{\text{CAN}}(z, v) dv \equiv \tau(z)$ with $\tau(\cdot)$ monotone increasing characterizes uniquely.

Asymptotic Approximation

As given

Ave. degree
$$\frac{E(D_+)}{n} = \rho_n(n-1)$$

• Broader Approach

$$h_n(u, v) = \rho_n w_n(u, v)$$

$$\rho_n = \mathbb{P}[\mathsf{Edge}]$$

$$w(u, v) dudv = \mathbb{P} [\xi_1 \in [u, u + du], \xi_2 \in [v, v + dv] |\mathsf{Edge}]$$

$$w_n(u, v) = \min \{w(u, v), \rho_n^{-1}\}$$

$$\frac{E(D_+)}{n} \equiv \lambda_n = \rho_n(n-1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Approximation

Block model: $\{\rho_n, \pi, W/S\}$

$$\pi \equiv (\pi_1, \dots, \pi_K)^T$$
$$W_{ab} \equiv \mathbb{P}[\xi_1 \in a, \xi_2 \in b | \mathsf{Edge}]$$
$$S_{ab} \equiv \frac{\mathbb{P}[\mathsf{Edge}|\xi_1 \in a, \xi_2 \in b]}{\mathbb{P}[\mathsf{Edge}]}$$
$$W = \pi^D S \pi^D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

where $\pi^D \equiv \text{diag}(\pi)$

Asymptotic Interpretation $h_{\rm CAN}$

Suppose
$$\hat{F}(x) = n^{-1} \sum_{i=1}^{n} \mathbf{1}(nD_i/L \le x)$$
.

Theorem 1

a) (Bollobas et al) If c = nρ_n = E(Ave. Degree)=O(1), then

 F ⇒ F, Z ~ F is d.f. of a mixture of Poisson variable with mixing measure τ(ξ), ξ ~ U(0,1).

b) If $c \to \infty$, then $\hat{F}^{-1}(u) \to \tau(u)$, a.e. uin probability, and therefore $\hat{F} \Rightarrow \mathcal{L}(\tau(\xi))$

Practical Interpretation

We can replace ξ by $\tau(\xi)$ and think of D_i as measure of "how well i makes friends" (see for example, "Visualizing head-to-tail affinities in large networks", Dyer and Owen 2010).

"Asymptotic" Models: Examples

In spirit of Bollobas et al, Chung and Lu etc

1) Block models

2) w(u,v) = a(u)a(v) $a(u) \propto \int_0^1 w(u,v)dv$ \therefore can take $a(u) = \tau(u) \uparrow$. 3) $w(u,v) = \sum_{j=1}^p w_j \phi_j(u) \phi_j(v)$ $|\phi_j| = 1, \phi_j \perp \phi_k, j \neq k.$

Which Quantitative Properties Can Be Deduced?

- Small world? Yes. (Bollobas et al for c = O(1), a fortiori in general)
- 2. Giant component? Yes. with probability $\rightarrow 1$ if $c \rightarrow \infty$.
- 3. Degree distribution is approximately power-law? Depends on $\tau(\cdot)$. If $\tau(u) \sim (1-u)^{-\alpha}$, power law.

Community Identification

General Modularity:

• Given Q_n : $K \times K$ positive matrices $\times K$ simplex $\rightarrow \mathbb{R}^+$.

•
$$Q_n(\mathbf{e}, A) = F_n\left(\frac{O(\mathbf{e}, A)}{\mu_n}, \frac{D_+}{\mu_n}, f(\mathbf{e})\right)$$
.
 $O(\mathbf{e}, A) \equiv ||o_{ab}(\mathbf{e})||, \mathbf{f}(\mathbf{e}) \equiv (f_1(\mathbf{e}), \dots, f_K(\mathbf{e}))^T, f_j(\mathbf{e}) \equiv \frac{n_j}{n}$.
 $\hat{\mathbf{c}} \equiv \arg \max Q_n(\mathbf{e}, A)$.
 $\mu_n = E(D_+) = (n-1)\lambda_n$.
• NG: $F_n \equiv F$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Profile Likelihood

•
$$\rho > 0$$

$$F(M, r, \mathbf{t}) = \sum_{a,b} t_a t_b \tau \left(\frac{\rho M_{ab}}{t_a t_b} \right),$$

$$\tau(x) \equiv x \log x + (1 - x) \log(1 - x).$$
• $\rho \to 0$

$$F(M, \mathbf{t}) = \sum_{a,b} t_a t_b \sigma \left(\frac{M_{ab}}{t_a t_b} \right),$$

$$\sigma(x) = x \log x - x.$$

Conditions

C1: a) The matrix S has no two rows equal and all elements > 0. b) $\pi_i > 0, i = 1, \dots, K$. (No two communities have same connection probabilities with others.) *C2:* $\mathcal{M} \equiv \{R : R_{ab} \geq 0, \text{ all } a, b, R^T \mathbf{1} = \pi\}.$ $Q(R) \equiv F(RSR^T, 1, R\mathbf{1}).$ $F: \mathcal{M} \times \mathbb{R}^+ \times \mathcal{S} \mapsto \mathbb{R}, \mathcal{S} \equiv \text{simplex, where } \mathbf{1} \equiv (1, 1, \dots, 1)^T.$ Then Q(R) is uniquely maximized over \mathcal{M} by $R = \pi^D \equiv \text{diag}(\pi)$ for all (π, S) in an open neighborhood Θ of (π_0, S_0) . (Unique population maximization)

C3: a) F is Lipschitz in \mathcal{M} in all its arguments.

b) On Θ , F has continuous second directional derivatives and $\frac{\partial Q(\pi^D)}{\partial r_{ab}} < 0$, all $(\pi, S) \in \Theta$. (Local maximization)

Global Consistency

Theorem 1

If C1–3 hold and
$$\frac{c_n}{\log n} \to \infty$$
, then

$$\limsup_n c_n^{-1} \log \mathbb{P}[\hat{\mathbf{c}} \neq \mathbf{c}] \le -s_Q, \text{ with } s_Q > 0.$$

Extension to $F_n \approx F$ requires simple condition. See also Snijders and Nowicki (1997) J. of Classification.

Corollary

Under the given conditions if

$$\hat{\pi}_{a} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(\hat{c}_{i} = a) \equiv \frac{\hat{n}_{a}}{n},$$
$$\hat{W} = \frac{O(\hat{c}, A)}{D_{+}},$$

then

$$\sqrt{n}(\hat{\pi} - \pi) \Rightarrow \mathcal{N}(\mathbf{0}, \pi^D - \pi\pi^T),$$
$$\sqrt{n}(\hat{W} - W) \Rightarrow \mathcal{N}(\mathbf{0}, \Sigma(\pi, W)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These are efficient.
Properties of N-G Modularity

- 1) NG satisfies C2, C3 if \mathcal{E} has all diagonal entries positive and all nondiagonal entries negative.
- 2) NG consistency may fail even though $W_{aa} > \sum_{b \neq a} W_{ab}$, $\forall a$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

 $D_i^\ell \equiv \ell$ degree of *i* is the number of independent paths of length $\leq \ell$ starting at *i*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Operator

Corresponding to $w_{CAN} \in L_2(0,1)$ there is operator: $T : L_2(0,1) \rightarrow L_2(0,1)$ $Tf(\cdot) = \int_0^1 w(\cdot, v) dv$ T- Hermitian

Note: $\tau(\cdot) = T(\mathbf{1})(\cdot)$.

$Theorem \ 2$

Let \hat{F}_{ℓ} be the empirical distribution of $(D_i, D_i^{(2)}, ..., D_i^{(\ell)})$ and F be the joint distribution of $(T(\mathbf{1})(\xi), T^2(\mathbf{1})(\xi), ..., T^{\ell}(\mathbf{1})(\xi))$ where ξ has a U(0, 1) distribution.

Theorem 2

If ho=c/n,

If c is bounded, then F̂ ⇒ G in probability, where G is the distribution of a set of independent Poisson variables with parameters T(1)(ξ), T²(1)(ξ), ..., T^I(1)(ξ) given ξ ~ U(0,1);

2. If $c \to \infty$, then $\hat{F} \Rightarrow F$ in probability, where F is the

Identifiability of NP Model

Theorem 3

The joint distribution $(T(1)(\xi), T^2(1)(\xi), ..., T^m(1)(\xi), ...)$ where $\xi \sim U(0, 1)$ determines P

Idea of proof: identify the eigen-structure of T.

Theorem 4

If T corresponds to a K-block model, then, the marginal distributions,

$$\left\{ T^{k}(1)(\xi) : k = 1, ..., K \right\}$$

determine (π, W) uniquely provided that the vectors π , $W\pi$, ..., $W^{K-1}\pi$ are linearly independent.

Three methods of estimation (potentially) yielding \sqrt{n} consistent estimates of block and other parametric submodels

Method of "Moments"

 (k, ℓ) -wheel

- i) A "hub" vertex
- ii) / spokes from hub
- *iii)* Each spoke has k connected vertices.

Total # of vertices (order): $k\ell + 1$. Total # of edges (size): $k\ell$. Eg: a (2,3)-wheel

Definition

Notation:

(i) If
$$R \subset F_n \equiv \{(i,j) : 1 \le i < j \le n\}$$

 $V(R) \equiv \{i : (i,j) \text{ or } (j,i) \in R, \text{ some } j\}$
 $E(R) = R$
A graph G and an edge set are identified if $V(G) = V(R)$ and
 $E(G) = R$.

(*ii*) If $R_1, R_2 \subset F_n$, $R_1 \sim R_2$ (isomorphism) iff $|V(R_1)| = |V(R_2)|$ and there exists $\pi : V(R_1) \to V(R_2)$, 1-1, onto, such that $E(R_2) = \{(\pi(i), \pi(j)) : (i, j) \in R_1, \text{ or } (j, i) \in R_1, \pi(i) < \pi(j)\}.$

Definitions

Given: $G \sim P$, $G \subset F_n$ For $R \subset F_n$, $\overline{R} \equiv \text{complement of } R$ in G, $P(R) = P[A_{ij} = 1, (i, j) \in R, A_{ij} = 0, (i, j) \in \overline{R}]$ $Q(R) \equiv P(A_{ij} = 1, (i, j) \in R).$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lemma

```
G generated according to h on F_n.
(1) P(R) =
      E\left[\prod\{h(\xi_i,\xi_i): (i,j\in R)\}\prod\{(1-h(\xi_i,\xi_i)): (i,j)\in \bar{R}\}\right]
(2) P(R) = Q(R) - \sum \{Q(R \cup (i, j)) : (i, j) \in \overline{R}\}
              + \sum \{Q(R \cup \{(i,j),(k,l)\}) : (i,j) \neq (k,l) \in \overline{R}\}
              \cdots \pm Q(G)
(3) Q(R) = \sum \{P(S) : S \supset R\}.
```

\sqrt{n} Consistency/Asymptotic Normality of "Moments"

Theorem 5

For
$$R \subset F_n$$
, $|V(R)| = p$, G generated according to P , let
 $\hat{P}(R) = \frac{1}{\binom{n}{p}N(R)} \sum \mathbf{1}(S \sim R : S \subset G),$
 $N(R) \equiv |\{S \subset F_n : S \sim R\}|,$
 $\hat{Q}(R) \equiv \sum \{\hat{P}(S) : S \supset R\}.$
Then

$$\sqrt{n}(\hat{Q}(R) - Q(R)) \Rightarrow N(0, \sigma^2(R, P)).$$

Multivariate normality holds as well.

Extensions

- |R| = p fixed
- $\rho \rightarrow 0$, $L \equiv \sum_{i,j} A_{ij}$
- $\tilde{Q}(R) \equiv \rho^{-p}Q(R) \rightarrow E(\Pi \{w(\xi_i, \xi_j) : (i, j) \in R\})$
- $\hat{\tilde{Q}}(R) \equiv \left(\frac{L}{n^2}\right)^{-p} \hat{Q}(R)$
- Conclusion of Theorem holds for $\hat{\tilde{Q}}$, \tilde{Q} if $n^2 \rho \to \infty$.

Connection With Wheels

Lemma 1

Let G be a random graph generated according to P, $|V(G)| = k\ell + 1$. Then if R is a (k, ℓ) -wheel,

 $Q(R) = E[T^k(1)(\xi_1)]^\ell$

Fitting by degree distributions

Theorem 2 suggests that

 For block models: Do maximum likelihood for I degree distributions I = 1,..., K, treating them as independent each a mixture of Poisson with appropriate parameter;

- In general, $T = T_{\theta}, \theta \rightarrow T_{\theta}$ smooth, Fit joint degree distribution as a sample from a mixture of Poisson as in Theorem 2.
- Conjecture: Leads to \sqrt{n} consistent estimates.

Pseudo likelihood

Chen-Levina-Bickel (2010) related to Newman-Leicht (2007) *K* block models

- Block i = 1, ..., n into K blocks arbitrarily, m = n/K,
 B₁₀ = {1, ..., m}, ..., B_{K0} = {(K 1)m + 1, ..., n}
- Complete data model

 c_1, \cdots, c_n i.i.d. $\mathbb{P}(c_i = a) = \pi_a$, $1 \le a \le K$

- Parameter P_{ab} , $1 \le a, b \le K$
- A_{ij} independent given c, $\mathbb{P}(A_{ij} = 1 | c) = P_{c_i d_j}$ where $d_j = a$ iff $j \in B_{a0}$
- $plhd(c, A, \pi, P) = \prod_{i=1}^{n} \pi_{c_i} \prod_{i \neq j} P_{c_i d_j}^{A_{ij}} (1 P_{c_i d_j})^{1 A_{ij}}$

Pseudo likelihood - algorithm

A1. Compute MLE of
$$(\pi, P)$$
, $(\hat{\pi}, \hat{P})$
A2. $\mathbb{P}(c_i = a | \hat{\pi}, \hat{P})$ for any i, a
A3.
 $\hat{c}_i = \arg \max_a \mathbb{P}(c_i = a | \hat{\pi}, \hat{P})$
Let $B_{a1} = \{i : \hat{c}_i = a\}, a = 1, \cdots, K$
A4. Return to A1 with $B_{a0} = B_{a1}$.

Simulation

Figure: Estimation of π (left) and W (right) (K = 2, n = 1000): pseudo likelihood (black), 1st degree + moment (blue), 1st, 2nd degrees (green)

Statistical Questions For Which These Results Can Be Used

- i) Checking "nonparametrically" with p moments whether 2 graphs are same (permutation tests used in social science literature for "block models", e.g., Wasserman and Faust, 1994).
- *ii)* Link prediction: predicting relations to unobserved vertices on the basis of an observed graph.

- *iii)* Model selection for hierarchies (block models).
- iv) Error bars on descriptive statistics.

Real Data: Zachary's Karate Club, K = 2

Figure: Left: profile likelihood. Right: Newman-Girvan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Real Data: Zachary's Karate Club, K = 4

Figure: Left: profile likelihood. Right: Newman-Girvan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Real Data: Private Branch Exchange

Connectivities

<ロト <回ト < 注ト < 注ト

Connectivities

1500 1500 1000 1000 N:L Z. 200 80 0 1500 1500 500 1000 500 1000 1:N 1:N

Figure: Different communities formed by NG and profile likelihood

うくぐ

э

Discussion

Extensions which are theoretically easy, in practice not so

- i) Directed graphs
- *ii)* Covariates (edge or vertex information)

Some extensions in progress

- *iii)* Computational issues
- iv) Relation of these models to dynamic ones

etc. etc.