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Ezxamples: Technological Networks

Figure: Internet (The OPTE Project)



Ezxamples: Social Networks

Figure: Karate Club (Newman, PNAS 2006)



Ezxamples: Biological Networks
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Figure: Food web (Neo Martinez, Berkeley)



Examples: Metabolic Web

l\lletabo“lic- s tihavwway =

Figure: Metabolic Pathways (IUBMB-Nicholson)



Ezxamples: Information Networks
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Figure: Paper networks (Marco A. Janssen, ASU)



A Mathematical Formulation

G = (V, E): undirected graph

{1,---, n}: Arbitrarily labeled vertices

A : adjacency matrix

Ajj =1 if edge between i and j (relationship)

Ajj = 0 otherwise



Implications of Mathematical Description

e Undirected: Relations to or from not distinguished.

e Arbitrary labels: individual, geographical information not used.



Descriptive Statistics for Graph Structures

Centrality

o Def: Degree D; = 3, ,; Aj

Statistics

* Relative degree 57 D;: “centrality of vertex”
L= 3, A = # of edges

e Average degree: “centrality of graph”

_ 2L

¢ n



Graph Structures

Cohesiveness
Def:
e Clique: Maximal fully connected subgraphs
e k-core: Maximal subset of vertices such that each is connected
to at least k other members of subset.
Statistics:

e Size of cliques

e Number of k-cores



Clustering

e Transitivity: If i is related to j and j is related to k, then it is

likely that 7 is related to k.

e Global Clustering Coefficient:

. 3x #of A
 Hof A+ #of v




Chain Structure

Def:
¢ (Geodesic) Path between i, j: (shortest) set of edges (i, i1)
(i1, 12) ... (K, f)-
e Connected component: Maximal set such that all pairs of
vertices are connected by path in set.

Statistics:

e # and size of connected components.



Network n m [3 5 13 e C Cws r  Ret{s).
Film actors 449913 25516482 11343 0980 348 23 020 078 0208 16,323
Company directors 7673 55302 1444 (876 460 - 059 0.88 0.276 88,253
Math coauthorship Undirected 253339 496489 392 0822 757 - 015 034 0120 89,146
Physics coauthorship  Undirected 52909 245300 927 0838 619 - 045 056 0363 234,236

=  Biology coauthorship  Undirected 1520251 11803064 1553 0918 492 - 0088 0.60 0127 234,236

2 Telephone call graph  Undirected 47000000 80000000 316 21 9,10
Email messages Directed 59812 86300 144 0952 495  1.5/20 016 108
Email address books  Directed 16881 57020 338 0.590 522 - 017 013 0002 248
Student dating Undirected 573 477 166 0503 1601 - 0005 0001 -0.029 34
Sexual contacts Und d 2810 3.2 B 197,198

= WWWaod.edu Directed f 1497135 555 1000 1127 Zi/24 0.1 029 20067 13,28

£ WWW AltaVista Directed 208549046 1466000000 720 0914 1618 21/27 56

£ Citation notwork Directed 783339 G7IGI98  BST 3.0/- 250

:é Roget’s Thesauru Directed 1022 5103 499 0977 487 - 013 015 D157 154
W 460902 16100000 6696 1.000 27 0.44 97,116

T intemet 10697 31992 596 1000 331 25 0.035 039 66, 111

T Power grid 4941 6594 267 1000 1899 - 010 oosn 323

& Train routes. Undirected 587 603 6679 LODD 216 - 0.6y 294

S Seftware packages Dirccted 1439 1723 120 0998 242 16/14 0070 0.082 239

£ Directed 1376 2213 161 1000 540 - 0 0012 315

& Undirected 24097 53248 434 L1000 11905 30000 0030 15

Undirected 88D 0.805 4.28 21 002 0011 6,282

_ Undirccted 7o 0996 256 22 0080 067 166

B Protein interactions Undirccted 2115 0.689 680 24 0072 0071 164

B Marine fond web Directed 134 Long 205 - 016 023 160

£ Freshwater food web  Directed 92 o0 190 - 020 0087 209
Neural network Directed 307 0967 397 - 018 028 323,328

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total
number of vertices i7; total number of edges ni; mean degree ¢; fraction of vertices in the largest component 5 (or the largest weakly
connected component in the case of a directed network); mean geodesic distance between connected vertex pairs £; exponent a
of the degree distribution if the distribution follows a power law (or “~” if not; in/out-degree exponents are given for directed
graphs); clustering coefficient C from Eq. (7.41); clustering coefficient Cys from the allernative definition of Eq. (7.44); and the degree
correlation coefficient + from Eq. (7.82). The last column gives the citation(s) for each network in the bibliography. Blank entries
indicate unavailable data.

Newman (2010) Networks: an introduction, Oxford



Quartiles (2-4) Social Information Technological Biological network
size (K) 59 450 47K 270 780 203K 1 5 24 3 .8 2
degree 4 14 113 7 8 67 3 4 67 8 9 11
1st.comp .82 .88 .98 98 1 1 1 1 1 1 1 1
geo.dist 5 6 16 11 14 16 3 11 19 3 4 7
cluster.cf .15 2 .59 11 12 13 .03 .05 1 16 18 2
Example size (K) degree 1st.comp geo.dist cluster.cf
math coauthor 253 4 .8 7.57 15
email 60 1 9 49 *
citation 783 9 * * *
Internet 11 6 1.0 3 .03
protein 2 2 .69 6.8 .07
food web .09 11 1.0 1.9 2



Community Identification

e V=ViU---UVgk
e V;:communities, i =1,---, K, where K is known.

V; highly interiorly, low exteriorly connected.

® Problem: Determine V; using only A



Approaches to Sub-community Identification: Mazimize

Modularities

¢ Newman-Girvan modularity (Phys. Rev. E, 2004) e = (e, -+ , €n):
e € {1,---,K} (community labels)

e The modularity function:

2
ante) = I, (2422 - (%62)°).
where

Oav(e,A) =3 Ajl(ei = a6 =b)
= (# of edges between a and b) a# b
= 2 x (# of edges between members of 3a), a=b
Di(e) =31, Oule, A)
= sum of degrees of nodes in k

D, = Zle Di(e) = 2 x (# of edges between all nodes )



Issues

e In principle NP hard
e A relaxation for K = 2 leads to method like spectral clustering

e How to compare performance



Stochastic Models

The Erd6s-Rényi Model
e Probability distributions on graphs of n vertices.
e P on {Symmetric n x n matrices of 0's and 1's}.
e E-R (modified): place edges independently with probability
c¢/n ( (5) Bernoulli trials ).

¢ ~ E(ave degree)



Qualitative Features of Empirical Graphs vs Qualitative

Features of E-R

E-R Empirical
Small world Yes Yes
Giant component Yes Yes
Power-law degree distribution  No Yes

Communities No Yes



Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

o Community label: ¢ = (¢, , ¢y) i.i.d. multinomial
(m1,-++ ,mk) = K “communities”.
e Relation:

P(A,‘j = 1|C,‘ = a, Cj = b) = Pab-
e Ajj conditionally independent

P(AUZO) = 1- Z TaTpPap.
1<a,b<K

e K =1: E-R model.



Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on oo graphs

Aldous/Hoover (1983)

for all permutations 7 <—
3 g:[0,1]* = {0,1} such that Aj = g(e, &, &, my),

where
a, & mijall i, j >, iid. U(0,1), gla, u,v,w) = gla, v, u, w),

Nij = MNji-



Ergodic Models

L is an ergodic probability iff for g with g(u, v, w) = g(v, u, w)
Y(u, v, w),

L is determined by
h(”a V) = P(AU = 1|§I = uaéj = V)a
h(u,v) = h(v, u).

Notes:

1. K-block models and many other special cases

2. Model (also referred to as threshhold models) also suggested by
Diaconis, Janson (2008)

3. More general models (Bollobés, Riordan & Janson (2007))



“Parametrization” of NP Model

e his not uniquely defined.

e h(p(u),p(v)), where ¢ is measure-preserving, gives same
model.

e But, hgan = that h(+,-) in equivalence class such that
PlAj =1 =2] = fol hcan(z, v)dv = 7(z) with 7(+)

monotone increasing characterizes uniquely.



Asymptotic Approximation

e As given
Ave. degree @ = pn(n—1)
e Broader Approach
hn(u,v) = pawa(u, v)
pn = P[Edge]
w(u,v)dudv =P[& € [u,u+ du],& € [v, v + dv]|Edge]
wy(u,v) = min{w(u,v),p;t}

ED) = ), = po(n—1).

n



Approzimation

Block model: {p,, m, W/S}

m=(m,..., k)"

Wap =P[& € a,& € b|Edge]
B P[Edge|£1 €ab € b]

Sab = P[Edge]
W = 7PSxP

where 70 = diag(n)



Asymptotic Interpretation hcan

Suppose F(x) = n1 27, 1(nD;/L < x).

Theorem 1

a) (Bollobas et al) If ¢ = np, = E(Ave. Degree)=0(1), then
F 28 F, Z ~ F is d.f. of a mixture of Poisson variable with
mixing measure 7(&), £ ~ U(0,1).

b) If ¢ = oo, then
F(u) > 7(v), ae. u
in probability, and therefore
F=L(r(¢)



Practical Interpretation

We can replace & by 7(£) and think of D; as measure of “how well
i makes friends” (see for example, “Visualizing head-to-tail

affinities in large networks”, Dyer and Owen 2010).



“Asymptotic” Models: FExamples

In spirit of Bollobas et al, Chung and Lu etc

1) Block models
2) w(u,v) = a(u)a(v)

a(u) o< [y w(u, v)dv

. can take a(u) = 7(u) 1.

3) wlu,v) =30 wigj(u)gj(v)
6] =1, ¢j Lk, j # k.



Which Quantitative Properties Can Be Deduced?

1. Small world? Yes. (Bollobas et al for ¢ = O(1), a fortiori in

general)
2. Giant component? Yes. with probability — 1 if ¢ — oo.

3. Degree distribution is approximately power-law? Depends on

7(:). If 7(u) ~ (1 — u)~ 2, power law.



Community Identification

General Modularity:
e Given Q,: K x K positive matrices x K simplex — R™.

© Qule,A) = Fp (%A, B f(e)).

O(e, A) = [loas(e)l]. f(e) = (fi(e)..... fk(e))T. fi(e)

5|3

¢ = argmax Qx(e, A).
pn = E(Dy) = (n—1)An.

e NG: F,=F.



e p>0

e p—0

Profile Likelihood

M,
F(M,r,t) =32, ptatsT (Ptatbb) )

7(x) = xlogx + (1 — x) log(1 — x).

M,
F(M,t) =3, tatsor (1)

o(x) = xlog x — x.



C1:

C2:

C3:

Conditions

a) The matrix S has no two rows equal and all elements > 0.

b) mi >0,i=1,...,K. (No two communities have same
connection probabilities with others.)

M={R:R;p>0, alla,b,RT1 =7}

Q(R) = F(RSRT,1,R1).

F: M xRt xS R, S =simplex, where 1 = (1,1,...,1)7.
Then Q(R) is uniquely maximized over M by R = 7P = diag(n)
for all (7, S) in an open neighborhood © of (7, So). (Unique
population maximization)

a) F is Lipschitz in M in all its arguments.

b) On ©, F has continuous second directional derivatives and

9Q(rP)

oy~ <0, all (m,5) € ©. (Local maximization)



Global Consistency

Theorem 1

If C1-3 hold and Ioz]n — 00, then

limsup, ¢, logP[€ # c] < —sq, with sg > 0.

Extension to F, = F requires simple condition. See also Snijders

and Nowicki (1997) J. of Classification.



Corollary

Under the given conditions if

then

These are efficient.



Properties of N-G Modularity

1) NG satisfies C2, C3 if £ has all diagonal entries positive and

all nondiagonal entries negative.

2) NG consistency may fail even though Was > 3, , Wap, Va.



Degree distributions

Definition
Df = /¢ degree of i is the number of independent paths of length

< /¢ starting at i.



The Operator

Corresponding to woan € L2(0,1) there is operator:
T 15(0,1) — Ly(0,1)

TF(:) = fo w(,v)dv

T- Hermitian

Note: 7(-) = T(1)(:).



Theorem 2

Let £, be the empirical distribution of (D;, D, ..., D)) and F be
the joint distribution of (T(1)(¢), T?(1)(¢), ..., TH(1)(€)) where ¢
has a U(0, 1) distribution.

Theorem 2

If p=c/n,
1. If ¢ is bounded, then F = G in probability, where G is the

distribution of a set of independent Poisson variables with

parameters T(1)(¢), T2(1)(¢),---, T'(1)(¢) given
¢~ U(0,1);

2. If ¢ = oo, then F= Fin probability, where F is the

e Yy e s a2 v 7 .~ D o T D



Identifiability of NP Model

Theorem 3

The joint distribution (T(1)(€), T2(1)(€), .., T™(1)(€), ..) where
& ~ U(0,1) determines P

Idea of proof: identify the eigen-structure of T.



Theorem 4

If T corresponds to a K-block model, then, the marginal

distributions,

{Tk(l)(g) k=1,.., K}

determine (7, W) uniquely provided that the vectors =, W, ...,

WHX—17 are linearly independent.



Three methods of estimation (potentially) yielding \/n
consistent estimates of block and other parametric

submodels



Method of “Moments”

(k,¢)-wheel
i) A “hub” vertex
i1) | spokes from hub
i11) Each spoke has k connected vertices.
Total # of vertices (order): k¢ + 1. Total # of edges (size): k/.
Eg: a (2,3)-wheel



Definition

Notation:
(i) FRCF,={(i,j):1<i<j<n}
V(R) = {i: (i,j) or (j, ) € R, some j}
E(R) = R
A graph G and an edge set are identified if V(G) = V(R) and
E(G)=R.
(1i) If Ri, Ro C Fpn, Ri ~ Ry (isomorphism) iff |V(R1)| = |V(R2)|
and there exists 7 : V(Ry) — V(R»), 1-1, onto, such that

E(R) =
{(x(i),7(j)) : (i,4) € Ry, or (j, i) € Ry, w(i) < m(j)}.



Definitions

Given: G~ P, G C F,

ForRC F,, R =complement of R in G,

P(R) = P[Aj =1, (i,j) € R, Aj =0, (i,j) € R]
Q(R)=P(A; =1, (i,j) ER).



G generated according to h on F,,.
(1) P(R) =
E [TT{h(&, &) = (1,5 € RIFTIH = h(éi, &) - (i,)) € R}]
(2) P(R) = Q(R) = X{Q(RU(i,))) : (i,j) € R}
+ 2 H{QRU{(i,4), (k, N}) = (1)) # (k1) € R}
-+ Q(G)
(3) QR)=3{P(S): SO R}




\/n Consistency/Asymptotic Normality of ”Moments”

Theorem 5

For R C F,, |V(R)| = p, G generated according to P, let
P(R) :WZMSNR: ScCG),
N(R)=|{SCF,: S~ R}

Q(R) = {P(S): SO R}.

Then

Vn(Q(R) = Q(R)) = N(0,0%(R, P)).

Multivariate normality holds as well.



FExtensions

|R| = p fixed
p—0, L= A
Q(R) =p™PQ(R) = E(IL{w(&,&) : (i,)) € R})

~

QR) = (&) " Q(R)

n?

Conclusion of Theorem holds for Q, @ if n’p — oo.



Connection With Wheels

Let G be a random graph generated according to P,
|V(G)| = k€ + 1. Then if R is a (k,£)-wheel,

Q(R) = E[T*(1)(&0))f



Fitting by degree distributions

Theorem 2 suggests that
e for block models: Do maximum likelihood for / degree
distributions / =1,--- , K, treating them as independent each
a mixture of Poisson with appropriate parameter;
e In general, T = Ty,0 — Ty smooth, Fit joint degree
distribution as a sample from a mixture of Poisson as in

Theorem 2.

o Conjecture: Leads to \/n consistent estimates.



Pseudo likelihood

Chen-Levina-Bickel (2010) related to Newman-Leicht (2007)
K block models

e Block i=1,---,ninto K blocks arbitrarily, m = n/K,
Bio :{]_7... ’m}7... ’BKO:{(K_]_)m_|_]_’... ,n}

e Complete data model
Clyr,Cpidd. Plci=a)=m,, 1 <a< K

e Parameter P,p, 1 < a,b< K

e Ajj independent given ¢, P(A; = 1|c) = P4, where d; = a iff
J € Bao

Aji _ A
° plhd(C, A T, P) = H?:l e, Hl;éj PC’;’]I(]. — PCidj)l Ajj



Pseudo likelihood - algorithm

A1. Compute MLE of (x, P), (#, P)
A2. P(¢; = a|#, P) for any i, a

A3.

o

; = argmaxP(c; = a|#, P)
a

Let Balz{i:&i:a},a:]_,...7K

A/. Return to Al with By = B1.



Stmulation
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Figure: Estimation of 7 (left) and W (right) (K =2, n = 1000): pseudo
likelihood (black), 1st degree + moment (blue), 1st, 2nd degrees (green)



Statistical Questions For Which These Results Can Be
Used

i) Checking “nonparametrically” with p moments whether 2
graphs are same (permutation tests used in social science

literature for “block models”, e.g., Wasserman and Faust,

1994).

i1) Link prediction: predicting relations to unobserved vertices on

the basis of an observed graph.
i1i) Model selection for hierarchies (block models).

iv) Error bars on descriptive statistics.



Real Data: Zachary’s Karate Club, K = 2
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Figure: Left: profile likelihood. Right: Newman-Girvan




Real Data: Zachary’s Karate Club, K = 4
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Figure: Left: profile likelihood. Right: Newman-Girvan
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Figure: Different communities formed by NG and profile likelihood



Discussion

Extensions which are theoretically easy, in practice not so
i) Directed graphs

i1) Covariates (edge or vertex information)

Some extensions in progress

i1i) Computational issues

iv) Relation of these models to dynamic ones

etc. etc.



